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Pneumatic-actuated valves are critical components in many applications, including cryo-
genic propellant loading for space operations. For these components, failures need to be
predicted so that components can be repaired to ensure mission success, i.e., health mon-
itoring and fault prognostics is required. In order to develop, test, mature, and deploy
valve prognostics algorithms, we have developed a testbed for pneumatic valves used in
cryogenic service for propellant loading operations, in which we can inject controlled dam-
age profiles and observe its effects on valve operation. In this paper, we focus on the
prognostics of a continuously-controlled pneumatic valve. We describe the construction of
the testbed, the fault injection mechanisms, and the model-based valve prognostics algo-
rithms. Experimental results from the testbed demonstrate successful prediction of valve
failure.

I. Introduction

Pneumatic-actuated valves play a critical role in cryogenic propellant loading systems. Since these valves
are used to control the flow of propellant, failures may have a significant impact on launch availability.1

Further, due to the strict safety requirements in such systems, there is a crucial need for valve health
monitoring and prognosis. In order to mature this technology, we have constructed a pneumatic valve
testbed that allows for the controlled injection of fault degradation profiles with which to test and validate
valve prognostics algorithms.2,3

In recent work,4,5 for discretely-operated valves, we developed efficient methods for model-based valve
prognostics, requiring only valve opening and closing times (as typically in real operations only valve position
is measured) to isolate and identify faults, and to predict end of life (EOL) and remaining useful life (RUL).
The approach still follows the general estimation-prediction framework developed in the literature for model-
based prognostics.6,7 In contrast to earlier work on valve prognosis using particle filters,1,8, 9 which can be
computationally intensive, the approach in recent work directly maps timing observations to fault parameter
values using an offline lookup table computed via simulation using an accurate, medium-fidelity physics-based
valve model.

In this work, we follow a similar approach for continuously-operated valves (i.e., valve position can be
controlled anywhere between fully closed and fully open). We develop a physics-based model of the valve.
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Figure 1. Prognostics demonstration testbed schematic.

We apply a model-based valve prognostics approach and provide experimental results from the testbed
demonstrating and validating the approach.

The structure of the paper is as follows. Section II discusses the testbed setup. Section III presents the
valve model. Section IV develops the valve prognosis framework, and Section V presents prognosis results
using real experimental data from the valve testbed. Section VI concludes the paper.

II. Valve Testbed

The valve prognostics testbed has been developed to demonstrate valve prognosis in the context of
cryogenic refueling operations. In this section, we summarize the testbed, highlighting the operation of the
continuously-controlled valve on which the technical contributions of this paper are focused. Additional
details on the testbed can be found in previous works.2,3

The testbed schematic is shown in Fig. 1. The dashed lines denote the electrical signals, including the
data acquisition I/O signals, power lines, etc. The solid lines denote the pneumatic pressure lines connecting
the supply and the valves. Power is provided by both a typical power supply and a battery backup supply

The testbed includes a continuously-controlled valve (CV), illustrated in Fig. 3 which is a normally-closed
valve with a linear cylinder actuator with dual pressure chambers. The valve is positioned by a pressure
difference between the primary pressure chamber which is at standard operational pressure and the secondary
chamber which can vary in pressure as controlled through the current-pressure transducer (IPT).
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Figure 2. CV valve leaks.

The IPT output pressure is regulated down from the input pressure and is directly proportional to the
applied control current supplied to the transducer. Thus, a low current will create a lower output pressure
and a higher current will increase the output pressure.

The testbed includes a discrete-controlled valve (DV), which is a normally-open valve with a linear
cylinder actuator. The valve is closed by filling the chamber above the piston with gas up to the supply
pressure, and opened by evacuating the chamber to atmosphere, with the spring returning the valve to its
default position. A three-way two-position solenoid valve (SV), is used for controlling the operation of the
DV valve.

With the testbed, we can investigate solenoid valve prognostics,10 battery prognostics,11 and pneumatic
valve prognostics.1 In this work, we focus on faults affecting the continuously-operated pneumatic valves
(CV). Pneumatic valves can suffer from leaks, increase in friction due to wear, and spring degradation.1

With the current configuration of the testbed, friction and spring faults cannot be injected or their rate
of progression controlled, so we are limited only to leak faults, which, in practice, are the most commonly
observed faults. As shown in Fig. 2, two different leak faults for the CV are considered:(i) a leak to
atmosphere from the signal line, through valve V3; and (ii) a leak to atmosphere from the supply line,
through valve V4. We use the remotely-operated proportional valves V3 and V4 to emulate these leaks. The
leak valves allow control over how much they can be opened in order to control the leakage rate and support
desired damage progression profiles.

III. Valve Modeling

In order to apply a model-based prognostics approach, we require a dynamic model of the component.
To this end, we develop a medium-fidelity physics-based model.

We consider here a normally-closed continuously-controlled valve, shown in Fig. 3. The actuator has
two pressure ports, one for the supply pressure, and one for the signal pressure. External to the valve, the
signal pressure is controlled between 3–15 psig in order to move the valve between fully closed and fully
open. A pressure regulator maintains a loading pressure on top of the valve piston, and the piston moves
by modulating the actuating pressure via the pilot valve. The pilot valve, balanced by the spring and the
diaphragm assembly, moves up or down according to the signal pressure. When moving up, the volume
below the piston is opened up the atmosphere, and when the pilot moves down, the volume below the piston
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Figure 3. Continuously-controlled valve schematic.

is opened up to the supply pressure.
We present here the model using continuous-time. For implementation purposes, we convert to a discrete-

time version using a sample time of 1× 10−4 s.
We develop a physics model of the valve based on mass and energy balances. The system state includes

the position of the piston, xp(t), velocity of the piston, vp(t), position of the pilot/spring assembly, xs(t),
velocity of the pilot/spring assembly, vs(t), mass of gas in volume below the piston mb(t), mass of gas in
the pipe connecting to the supply input, msp(t), and mass of gas in the pipe connecting to the signal input,
msg(t):

x(t) =
[
xp(t) vp(t) xs(t) vs(t) mb(t) msp(t) msg(t)

]T
. (1)

The piston position is defined as xp = 0 when the valve is fully closed, and xp = Ls when fully open, where
Ls is the stroke length of the valve (about 20 mm). When fully closed, the pilot/spring assembly position is
also defined as xs = 0.

The derivatives of the states are described by

ẋ(t) =
[
vp(t) ap(t) vs(t) as(t) fb(t) fsp(t) fsg(t)

]T
, (2)

where a is acceleration and f is mass flow.
The two inputs are considered to be

u(t) =
[
usp(t) usg(t)

]T
, (3)

where usp(t) is input pressure to the supply port, which is nominally 75 psig, and usg(t) is the input pressure
to the signal port, which varies between 3–15 psig, depending on the commanded valve position.

The acceleration of the piston is defined by the combined mass of the piston and plug, mp, and the sum
of forces acting on the piston, which includes the force from the actuating pressure, Fa = pbAp, where Ap is
the area of the piston in contact with the actuating pressure; the force from the loading pressure, Fl = Alpl,
where Al is the area of the piston in contact with the loading pressure; friction, Ff = −rpvp(t), where rp is
the coefficient of kinetic friction; the spring force, Fs = k(xp + xo − xs) where xo is the spring compression
at the closed position; the weight, Fw = −mpg, and the contact forces, Fc(t), at the boundaries of the
valve/piston motion,

Fc(t) =


kc(−x), if x < 0,

0, if 0 ≤ x ≤ Ls,
−kc(x− Ls), if x > Ls,

(4)
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where kc is the (large) spring constant associated with the flexible seals. Overall, the acceleration term is
defined by

ap(t) =
1

mp
(Fa − Fs − Fl − Fw − Ff + Fc) (5)

The pressures pl is assumed to be constant and known, and the pressure pb is computed as

pb =
mb(t)RgT

Vb0 +Apxp(t)
, (6)

where we assume an isothermal process in which the (ideal) gas temperature is constant at T , Rg is the gas
constant for the pneumatic gas, and Vb0 is the minimum gas volume for the gas chamber below the piston.

The acceleration of the pilot/spring assembly is defined by their combined mass, ms, and the sum of
forces acting on the assembly, which includes the force from the spring Fs (as defined above); the force
from the signal pressure, Fsg = (psg − patm)Ad, where Ad is the area of the diaphragm in contact with the
signal pressure and patm is atmospheric pressure; friction, Ffs = rsvs(t), where rs is the coefficient of kinetic
friction; the force from the supply pressure, Fsp = (psp − patm)Asp, where Asp is the area of the pilot in
contact with the supply pressure; the weight, Fws = msg; and contact forces Fcs (defined as above but with
Lss, the stroke length of the pilot/spring assembly).

The pressures psg and psp are computed as

psg =
msg(t)RgT

Vsg
, (7)

psp =
msp(t)RgT

Vsp
, (8)

where Vsg is the volume of the pipe containing the signal pressure, and Vsp is the volume of the pipe containing
the supply pressure.

The mass flows fb(t), fsp(t), and fsg(t) are defined by

fb(t) = (xs < 0) · fg(psp(t), pb(t))− (xs > 0) · fg(pb(t), patm), (9)

fsp(t) = fg(usp(t), psp(t))− fsp,leak(t)− (xs < 0) · fg(psp(t), pb(t)), (10)

fsg(t) = fg(usg(t), psg(t))− fsg,leak(t), (11)

where fsg,leak and fsg,leak are leak terms (both leaks to atmosphere). Note also that the flows into and out
of the underside of the piston depend on the position of the pilot/spring assembly. Here, fg defines gas flow
through an orifice for choked and non-choked flow conditions.12 Non-choked flow for p1 ≥ p2 is given by
fg,nc(p1, p2) =

CsAsp1

√√√√ γ

ZRgT

(
2

γ − 1

)((
p2
p1

) 2
γ

−
(
p2
p1

) γ+1
γ

)
, (12)

where γ is the ratio of specific heats, Z is the gas compressibility factor, Cs is the flow coefficient, and As is
the orifice area. Choked flow for p1 ≥ p2 is given by

fg,c(p1, p2) = CsAsp1

√√√√ γ

ZRgT

(
2

γ + 1

) γ+1
γ−1

. (13)

Choked flow occurs when the upstream to downstream pressure ratio exceeds
(
γ+1
2

)γ/(γ−1)
. The overall gas
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flow equation is then given by

fg(p1, p2) =



fg,nc(p1, p2) if p1 ≥ p2
and p1

p2
<
(
γ+1
2

) γ
(γ−1) ,

fg,c(p1, p2) if p1 ≥ p2
and p1

p2
≥
(
γ+1
2

) γ
(γ−1) ,

−fg,nc(p2, p1) if p2 > p1

and p2
p1
<
(
γ+1
2

) γ
(γ−1) ,

−fg,c(p2, p1) if p2 > p1

and p2
p1
≥
(
γ+1
2

) γ
(γ−1) ,

. (14)

The only available measurement is the valve position, so we have

y(t) =
[
xp(t)

]
. (15)

We define end of life through the use of timing limits on the valves, as is done in real valve operations,1

and also the error in its steady-state position. The valve in the testbed is required to open within 10 s, close
within 5 s, and when commanded to open to 100% it must open up at least to 97%.

IV. Valve Prognosis

We describe in this section the prognosis framework developed for the valve. We follow here the same gen-
eral estimation-prediction framework of model-based prognostics as defined in the scientific literature.6,7, 13

However, since we use only valve timing and steady-state position values for prognosis, we use a simpler
estimation approach, based recent work,4,14 as opposed to more complex and computationally intensive
filtering approaches used in previous works.6,15 We first formulate the prognostics problem, followed by a
description of the estimation approach and a description of the prediction approach.

A. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)),

y(k) = h(k,x(k),θ(k),u(k),n(k)),

where k is the discrete time variable, x(k) ∈ Rnx is the state vector, θ(k) ∈ Rnθ is the unknown parameter
vector, u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process noise vector, f is the state equation,
y(k) ∈ Rny is the output vector, n(k) ∈ Rnn is the measurement noise vector, and h is the output equation.a

In prognostics, we are interested in predicting the occurrence of some event E that is defined with respect
to the states, parameters, and inputs of the system. We define the event as the earliest instant that some
event threshold TE : Rnx × Rnθ × Rnu → B, where B , {0, 1} changes from the value 0 to 1.16 That is, the
time of the event kE at some time of prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP .

In the context of systems health management, TE is defined via a set of performance constraints that
define what the acceptable states of the system are, based on x(k), θ(k), and u(k).7 In this context, kE
represents end of life (EOL), and ∆kE represents remaining useful life (RUL). For valves, timing requirements

aBold typeface denotes vectors, and na denotes the length of a vector a.
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are provided that define the maximum allowable time a valve may take to open or close, and these define
TE .1 For the CV valve, steady-state position errors are also used to define TE .

The prognostics problem is to compute estimates of EOL and/or RUL. To do this, we first perform
an estimation step that computes estimates of x(k) and θ(k), followed by a prediction step that computes
EOL/RUL using these values as initial states. For the case of the valve, the future inputs are known, i.e.,
the valve is simply cycled open and closed, so there is no uncertainty with respect to future inputs.

B. Estimation

Valve position measurements for distance traveled, steady state position and operation time are used for
prognostics. We can extract from the continuous position measurement the timing information by computing
the difference in time between when the valve is commanded to move, and when it reaches its final position.
Using the developed model, we can search for the leak parameter value that matches the observed opening
or closing time or steady-state position.

In order to perform the estimation, we construct offline a lookup table, using simulation which maps leak
size to open and close times and steady-state position.4,14 With a fine enough granularity, a lookup table
will provide accurate estimates but at a fraction of the computational cost of online estimation methods. To
estimate the parameter that defines how the fault evolves in time, we assume a linear progression of the leak
parameter and perform a linear regression on the history of estimated leak parameters.

For the signal line leak fault, steady state values are used for fault detection, RUL and EOL estimation.
The signal pressure controls the open/close position of the valve while the supply pressure is used for
regulating the pressure inside the valve. When this fault is injected, there is no change in the supply
pressure but the signal pressure decreases and so the valve is not able to reach its desired steady state final
value.

For the supply line leak fault, open time values are used for fault detection, RUL and EOL estimation.
When this leak is injected, there is a decrease in the supply pressure, which leads to an increase in the valve
opening time (since the corresponding pressure forces take longer to develop). As the leak increases the open
time increases accordingly, while the steady state values remain relatively constant.

C. Prediction

Based on the current estimated leak parameter value and regression parameters, we can compute the value
of the leak parameter at any future time using the damage progression equation. For the thresholds defined
by TE , we can determine the maximum leak parameter corresponding to EOL, and then using the damage
progression equation determine at what future time the leak parameter will reach that value, thus providing
EOL.

Both faults have the same qualitative effects; they produce an increase in valve opening time and a
decrease in steady-state position. However, their quantitative effects are different; the signal pressure leak
has a greater effect on steady-state position and the supply pressure leak a greater effect on opening time.
Therefore, we can isolate which fault is present by inspecting which trend is more significant. For a signal
leak, the deviation in nominal behavior will be observed first in steady-state position, and for a supply leak,
the deviation will be observed first in the opening time. Depending upon the fault isolated the predictions
for RUL are computed.

V. Experimental Results

We present here experimental results using the valve prognostics testbed. In each experiment, the valve
is cycled open and closed repeatedly, every 10 s, until the EOL condition is reached. The valve under
consideration is considered to be failed when it opens in 10 s or greater, closes in 5 s or greater, or the steady
state valve percentage when commanded to 100% is 97% or less. In practice, we find that the faults have no
significant effect on the valve closing time, so we focus only on opening time and the steady-state position.
The nominal valve opening time is around 7.5 s, and we consider a fault detected when open time crosses the
8 s threshold. For the steady-state position, the nominal value (when commanded to 100% open) is 1.005,
and we consider a fault detected when it falls below 1.

Faults are injected by linearly increasing the open percentage of the desired leak valve in increments of
1%. We first present results for the signal line leak fault, followed by results for the supply line leak fault.
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A. Signal Line Leak Fault

As described in Section II, the signal line leak fault is injected by controlling the position of the leak valve
V3. This emulates the leak at the output port of the IPT valve or input signal port of the CV. As described
in Section III, this fault causes a decrease in the steady state position value and increase in the open times.
Fig. 4 shows the open times of the valve during the fault progression which crosses the fault detection
threshold but does not cross the EOL threshold, and Fig. 5 shows the steady state values, through which
EOL is reached. Both the open times and steady-state position values are noisy hence we take a mean of the
last three cycles to determine if either of the values have crossed the detection threshold value. As discussed
earlier the leak valve position is increased by 1% every cycle, and by the 38th cycle the steady-state position
value crosses the detection threshold. Since the steady-state position detection threshold crossed before the
open time threshold, it is determined to be a signal line leak fault which is in agreement with the experiment.

The RUL predictions are given in Fig. 6, where α = 0.2 represents a desired accuracy constraint, and
RUL∗ denotes the true RUL. The predictions converge relatively quickly after the fault is detected, however
it is only after the 30th cycle that a noticeable degradation emerges. The algorithm makes predictions which
are very close to or within the prediction cone until the end of experiment.
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B. Supply Line Leak Fault

As described in Section II, the supply line leak fault is injected by controlling the position of the leak valve
V4. As described in Section III, this fault, like the signal line leak fault, causes an increase in opening times
and a decrease in steady-state position values. Fig. 7 shows the open times of the valve during the fault
progression, and Fig. 8 shows the steady-state position values. Although qualitatively similar, there are large
quantitative differences from the observations obtained from the signal line leak fault experiment. A fault is
detected at the 43rd cycle based on the opening times, thus a supply line leak fault is correctly diagnosed.

Fig. 9 shows the RUL predictions. After detecting the fault the predictions converge relatively quickly,
but, as with the signal line leak fault, a noticeable trend only emerges after 30 cycles. The algorithm makes
predictions which are very close to or within the prediction cone until the end of experiment.

VI. Conclusions

In this paper, we described the development of a valve prognostics testbed, focusing on a continuously-
controlled valve. We developed a physics model of the valve and a model-based prognostics approach. To
demonstrate the approach, we emulated faulty operation by injecting leakage faults in the system. The novel
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valve prognosis framework operates with limited measurements, using only valve timing and steady state
position information, but was demonstrated to provide accurate EOL predictions.

Future work will involve conducting more testbed experiments to improve the developed model and
prognosis framework, and further validate the algorithms with experimental data from the testbed.

Acknowledgment

This work was funded in part by the NASA System-wide Safety Assurance Technologies (SSAT) project
under the Aviation Safety (AvSafe) Program of the Aeronautics Research Mission Directorate (ARMD), by
the NASA Automated Cryogenic Loading Operations (ACLO) project under the Office of the Chief Technol-
ogist (OCT) of Advanced Exploration Systems (AES), and by the Advanced Ground Systems Maintenance
(AGSM) Project under the Ground Systems Development and Operations program.

References

1Daigle, M. and Goebel, K., “A Model-based Prognostics Approach Applied to Pneumatic Valves,” International Journal
of Prognostics and Health Management , Vol. 2, No. 2, Aug. 2011.

2Kulkarni, C., Daigle, M., and Goebel, K., “Implementation of Prognostic Methodologies to Cryogenic Propellant Loading

10 of 11

American Institute of Aeronautics and Astronautics



Testbed,” IEEE AUTOTESTCON 2013 , Sept. 2013.
3Kulkarni, C., Gorospe, G., Daigle, M., and Goebel, K., “A Testbed for Implementing Prognostic Methodologies on

Cryogenic Propellant Loading Systems,” IEEE AUTOTEST 2014 , September 2014.
4Daigle, M., Kulkarni, C., and Gorospe, G., “Application of Model-based Prognostics to a Pneumatic Valves Testbed,”

2014 IEEE Aerospace Conference, March 2014.
5Kulkarni, C., Daigle, M., Gorospe, G., and Goebel, K., “Validation of Model-Based Prognostics for Pneumatic Valves in

a Demonstration Testbed,” Annual Conference of the Prognostics and Health Management Society 2014 , September 2014, pp.
76–85.

6Orchard, M. and Vachtsevanos, G., “A Particle Filtering Approach for On-Line Fault Diagnosis and Failure Prognosis,”
Transactions of the Institute of Measurement and Control , Vol. 31, No. 3-4, June 2009, pp. 221–246.

7Daigle, M. and Goebel, K., “Model-based Prognostics with Concurrent Damage Progression Processes,” IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, Vol. 43, No. 4, May 2013, pp. 535–546.

8Daigle, M. and Goebel, K., “Prognostics for Ground Support Systems: Case Study on Pneumatic Valves,” Proceedings
of AIAA Infotech@Aerospace 2011 Conference, March 2011.

9Daigle, M. and Goebel, K., “Model-based prognostics under limited sensing,” 2010 IEEE Aerospace Conference, March
2010.

10Daigle, M. and Goebel, K., “Improving computational efficiency of prediction in model-based prognostics using the
unscented transform,” Proc. of the Annual Conference of the Prognostics and Health Management Society 2010 , Oct. 2010.

11Daigle, M. and Kulkarni, C., “Electrochemistry-based Battery Modeling for Prognostics,” Annual Conference of the
Prognostics and Health Management Society 2013 , Oct. 2013, pp. 249–261.

12Perry, R. and Green, D., Perry’s chemical engineers’ handbook , McGraw-Hill Professional, 2007.
13Luo, J., Pattipati, K. R., Qiao, L., and Chigusa, S., “Model-based prognostic techniques applied to a suspension system,”

IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 5, Sept. 2008, pp. 1156
–1168.

14Teubert, C. and Daigle, M., “I/P Transducer Application of Model-Based Wear Detection and Estimation using Steady
State Conditions,” Proceedings of the Annual Conference of the Prognostics and Health Management Society 2013 , Oct. 2013,
pp. 134–140.

15Daigle, M., Saha, B., and Goebel, K., “A Comparison of Filter-based Approaches for Model-based Prognostics,” 2012
IEEE Aerospace Conference, March 2012.

16Daigle, M. and Sankararaman, S., “Advanced Methods for Determining Prediction Uncertainty in Model-Based Prog-
nostics with Application to Planetary Rovers,” Annual Conference of the Prognostics and Health Management Society 2013 ,
Oct. 2013, pp. 262–274.

11 of 11

American Institute of Aeronautics and Astronautics


